

EMC Test Report

Prepared for: Washroom Wizard Limited

Product Name: ECO Breeze Air fragrance / filtration unit

Model Number: None stated

Test Standards: EN 55014-1:2006 + A1:2009 + A2:2011

EN 55014-2:1997 + A1:2001 + A2:2008 EN 61000-3-2:2006 + A1:2009 + A2:2009

EN 61000-3-3:2008

Tested at: Kiwa Blackwood Compliance Laboratories

Unit 8 Woodfieldside Business Park

Pontllanfraith Blackwood NP12 2DG United Kingdom

Tel: +44 (0) 1495 229219 Web: www.kiwa.co.uk

Test Report Issue Date: 26 February 2016

Tested by:	
Tested by:	
Approved by:	

This test report may be reproduced and shall only be reproduced in full.

The Digital Signatures used in this PDF report enable identification of the signatories.

The Signatures tab can be used to confirm that no changes were made to this document since it was signed.

If the integrity of any reproduction of this test report is in doubt contact Kiwa Blackwood Compliance Laboratories for validation.

Any opinions or interpretations given within this report are outside of the scope of the UKAS accreditation.

R15-3459A Page 1 of 29

Contents

Section 1: Overview

Section 1.1: General

Section 1.2: Customer Details

Section 1.3: Equipment Under Test (EUT)

Section 2: Details relating to the Equipment Under Test

Section 2.1: Equipment Under Test (EUT)

Section 2.2: Auxiliary Equipment (AE)

Section 2.3: Configuration Diagram/Photograph of EUT

Section 3: Test Results Summary

Section 3.1: Test Results Summary Table

Section 3.2: Measurement Uncertainty

Section 4: Formal Test Results

Section 4.1: Mains Port Conducted Emissions

Section 4.2: Discontinuous Conducted Emissions

Section 4.3: Disturbance Power Emissions

Section 4.4: Radiated Emissions

Section 4.5: Mains Harmonics

Section 4.6: Voltage Fluctuations

Section 4.7: Electrostatic Discharge

Section 4.8: EFT/Bursts

Section 4.9: Surge Immunity

Section 4.10: Conducted RF Immunity

Section 4.11: Dips & Interruptions

Section 5: Performance Criteria

Section 6: List of Abbreviations

Annex A: Graphical Results

Graph 1: Mains Port Conducted Emissions - Live Terminal

Graph 2: Mains Port Conducted Emissions - Neutral Terminal

Graph 3: Disturbance Power Emissions - Mains Cable

Annex B: Tabular Results

Table 1: Mains Harmonics Results

Annex C: Photographs

Photograph 1: Mains Port Conducted Emissions Setup

Photograph 2: Disturbance Power Emissions Setup

Photograph 3: Electrostatic Discharge Setup

Photograph 4: EFT / Bursts Setup

Photograph 5: Surge Immunity Setup

Photograph 6: Conducted RF Immunity Setup

Photograph 7: Dips & Interruptions Setup

R15-3459A Page 2 of 29

Section 1: Overview

Section 1.1: General

This test report contains details of testing carried out on sample(s) submitted to Kiwa Blackwood Compliance Laboratories for an assessment against Electromagnetic Compatibility (EMC) standards in accordance with an agreed Test Plan.

This test report relates only to the specific items detailed in Section 1.3 and Section 2 as Equipment Under Test (EUT). The results given in this report relate only to the tests, configurations, operation modes and arrangements of the EUT as defined within this report.

The results contained in this test report do not relate to any Auxiliary Equipment (AE) which has been used to exercise, monitor and/or provide suitable loading for the EUT. AE, where applicable, is also detailed in Section 2.

Deviations from, additions to, or exclusions from the standard test method and, where applicable, information on specific test conditions, or where tests are not covered by our UKAS Accreditation schedule, are stated in the Results Summary Table in Section 3.1.

Fully testing to a harmonised standards as listed in the Official Journal is the equivalent of the *EMC* Assessment and this gives a presumption of conformity to the EMC Directive 2004/108/EC. The customer is advised to keep up to date with changes to standards in the Official Journal which may affect the compliance of the product.

Opinions and interpretations where given in this test report are outside of the scope of our UKAS Accreditation.

Section 1.2: Customer Details

This test report was prepared for:

Washroom Wizard Limited 6B Park Way Porterswood St Albans AL3 6PA

Section 1.3: Equipment Under Test (EUT)

The equipment under test was an air fragrance and filtration unit for use in commercial washrooms and toilets.

R15-3459A Page 3 of 29

Section 2: Details relating to the Equipment Under Test

Test Start Date: 01 December 2015
Test Completed Date: 01 December 2015

Section 2.1: Equipment Under Test (EUT)

Product Name:	ECO Breeze
Manufacturer:	Washroom Wizard Limited
Description:	Air fragrance / filtration unit
Model No:	None stated
Part No:	None stated
Serial No:	None stated
Build State:	Pre-production sample
Condition:	Good / working
Software Version:	None stated

Section 2.2: Auxiliary Equipment (AE)

No auxiliary equipment was used when testing the EUT.

Section 2.3: Configuration Diagram/Photograph of EUT

R15-3459A Page 4 of 29

Section 3: Test Results Summary

Section 3.1: Test Results Summary Table

Test:	Standard:	Test Level/Frequency Range:	Mod.:	Result:
Mains Port Conducted Emissions	EN 55014-1:2006 + A1:2009 + A2:2011	Household and similar products	0	Pass
Discontinuous Conducted Emissions	EN 55014-1:2006 + A1:2009 + A2:2011	Household and similar products	0	Pass
Disturbance Power Emissions	EN 55014-1:2006 + A1:2009 + A2:2011	Household and similar products	0	Pass
Radiated Emissions	EN 55014-1:2006 + A1:2009 + A2:2011	Household and similar products	N/A	N/A
Mains Harmonics	EN 61000-3-2:2006 + A1:2009 + A2:2009	Class A	0	Pass
Voltage Fluctuations	EN 61000-3-3:2008	Pst/dc(%)/dmax(%)/d(t)	0	Pass
Electrostatic Discharge	EN 55014-2:1997 + A1:2001 + A2:2008	±4.0kV Contact/±8.0kV Air	0	Pass
EFT/Bursts	EN 55014-2:1997 + A1:2001 + A2:2008	±1.0kV, Live, Neutral and Earth	0	Pass
Surge Immunity	EN 55014-2:1997 + A1:2001 + A2:2008	±1.0kV Line to Line, ±2.0kV Line to Earth	0	Pass
Conducted RF Immunity	EN 55014-2:1997 + A1:2001 + A2:2008	150kHz to 230MHz, 3V 80% AM 1kHz	0	Pass
Dips & Interruptions	EN 55014-2:1997 + A1:2001 + A2:2008	>95%/60%/30%	0	Pass

All of the above tests are included on the Kiwa Blackwood UKAS accreditation schedule (No. 2667).

Mod. (modification status):

0 The EUT was tested as received, i.e. without any modifications.

R15-3459A Page 5 of 29

Section 3.2: Measurement Uncertainty

ISO/IEC 17025:2005 "General requirements for the competence of testing and calibration laboratories" requires measurement uncertainty to be estimated for all testing done.

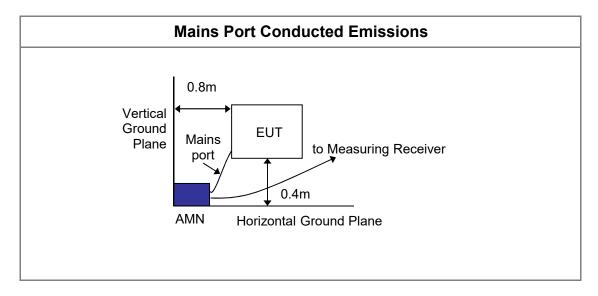
Measurements Uncertainty for conducted and radiated emissions has been calculated and applied in accordance with CISPR 16-4-2:2003. Measurement Uncertainty has been calculated for all other tests in accordance with UKAS document LAB 34 Edition 1:2002.

With regard to emissions testing Ulab meets Ucispr meaning that a simple pass or fail is reported.

With regard to Radiated Field Immunity and Conducted RF Immunity testing the test level generation uncertainty has not been added to the test level. This is in line with current Cenelec interpretation sheets on the two basic standards EN 61000-4-3 and EN 61000-4-6.

With regard to other Immunity tests the calibration parameters of the test equipment meet the basic standard requirement for tolerances even when extended by the calibration uncertainty.

R15-3459A Page 6 of 29


Section 4: Formal Test Results

Section 4.1: Mains Port Conducted Emissions

Test Standard: EN 55014-1:2006 + A1:2009 + A2:2011

Frequency Range: 150 kHz to 30 MHz

Operation Mode: The fan was operating during the test.

Test Equipment Used:

8501	EMCO 3825/2 Line Impedance Stabilisation Network
8627	Telegartner J01006A0836 10dB Attenuator
8761	10m BNC cable
8659	50Ω Termination
8513	HP8566B Spectrum Analyser System
8636	HP Conducted Emissions Software
8525	Ladybird Nightlight
8648	Oregon Scientific BAA898HG Environmental Monitor

Test Results:

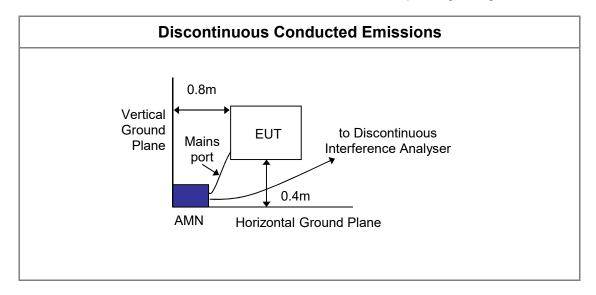
Below are the top recorded worst case mains port conducted emissions:

Mains Voltage (Vac):	Terminal:	Detector:	Frequency (MHz):	Level (dB(μV)):	Limit (dB(μV)):	Margin (dB):	Result:
230	N	PK	0.15 - 30		QP	>-10	Pass
230	L	PK	0.15 - 30		QP	>-10	Pass
230	N	AV	0.5846	25.3	46.0	-20.7	Pass
230	N	AV	0.5176	25	46.0	-21	Pass
230	N	AV	0.5041	24.3	46.0	-21.7	Pass
230	N	AV	0.4935	23.7	46.1	-22.4	Pass
230	N	AV	0.6035	23.3	46.0	-22.7	Pass
230	L	AV	0.5846	22.5	46.0	-23.5	Pass

Additional Comments:

None

R15-3459A Page 7 of 29



Section 4.2: Discontinuous Conducted Emissions

Test Standard: EN 55014-1:2006 + A1:2009 + A2:2011

Frequency Range: 150 kHz to 30 MHz

Operation Mode: The fan was turned on and off, and was operating during the test.

Test Equipment Used:

8501	EMCO 3825/2 Line Impedance Stabilisation Network
8627	Telegartner J01006A0836 10dB Attenuator
8761	10m BNC cable
8659	50Ω Termination
8513	HP8566B Spectrum Analyser System
8636	HP Conducted Emissions Software
8648	Oregon Scientific BAA898HG Environmental Monitor

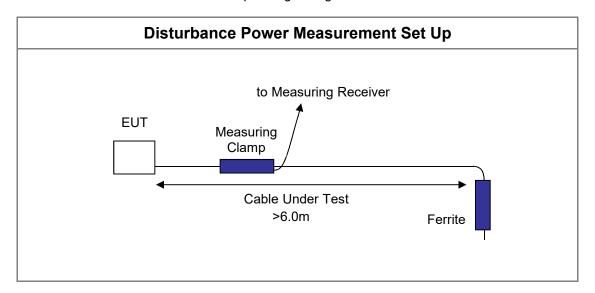
Test Results:

Frequency (MHz):	Detector:	Limit, L (dB(μV)):	No of clicks over Limit, L:	Time (min):	Relaxed Limit, Lq (dB(μV)):	No of clicks over Lq:	Result:
0.15	Quasi-Peak						Pass
0.5	Quasi-Peak						Pass
1.4	Quasi-Peak						Pass
30	Quasi-Peak						Pass

Additional Comments:

Discontinuous conducted emissions were manually observed at 0.15 MHz and 0.5 MHz. They were observed as not exceeding the continuous conducted emissions limits.

R15-3459A Page 8 of 29



Section 4.3: Disturbance Power Emissions

Test Standard: EN 55014-1:2006 + A1:2009 + A2:2011

Frequency Range: 30 MHz to 300 MHz

Operation Mode: The fan was operating during the test.

Test Equipment Used:

8651	Chase CEC8110 Ferrite Absorbing Clamp
8651A	Telegartner J01006A0835 6dB Attenuator
06E1D	10m PNC cable

8651B 10m BNC cable

HP8568B Spectrum Analyser System
 HP Radiated Emissions Pre-scan Software

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

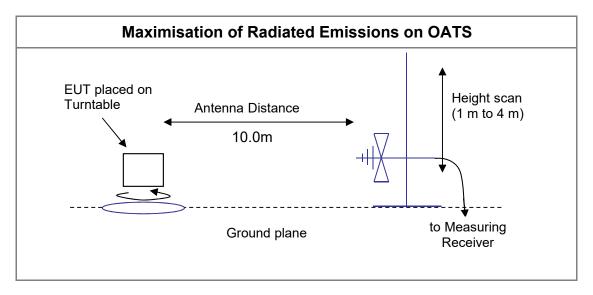
Below are the top recorded worst case disturbance power emissions:

Mains Voltage (Vac):	Cable Under Test:	Detector:	Frequency (MHz):	Level (dBpW):	Limit (dBpW):	Margin (dB):	Result:
230	Mains	AV	34.60	27.9	35.2	-7.3	Pass
230	Mains	AV	34.84	27.9	35.2	-7.3	Pass
230	Mains	AV	35.00	27.9	35.2	-7.3	Pass
230	Mains	AV	34.36	27.8	35.2	-7.4	Pass
230	Mains	AV	35.98	27.8	35.2	-7.4	Pass
230	Mains	QP	35.08	33.5	45.2	-11.7	Pass

Additional Comments:

None

R15-3459A Page 9 of 29



Section 4.4: Radiated Emissions

Test Standard: EN 55014-1:2006 + A1:2009 + A2:2011

Frequency Range: 30 MHz to 1000 MHz

Operation Mode: N/A

Test Equipment Used:

None

Test Results:

Below are the top recorded worst case radiated emissions:

Antenna Polarisation:	Antenna Distance (m):	Detector:	Frequency (MHz):	Level (dB(μV/m)):	Limit (dB(μV/m):	Margin (dB):	Result:
V							N/A
Н							N/A

Additional Comments:

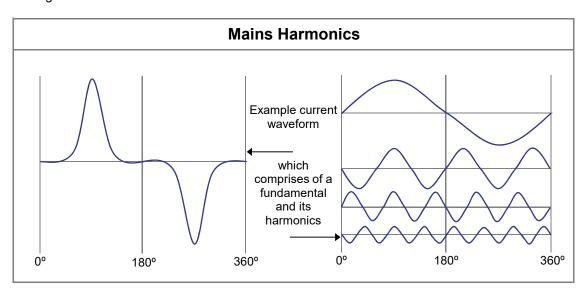
The EUT had no clock frequencies >30MHz and meets the requirements of clause 4.1.2.3.2 and figure 10 of EN 55014-1:2006 + A1:2009, therefore this test is not required.

R15-3459A Page 10 of 29

Section 4.5: Mains Harmonics

Test Standard: EN 61000-3-2:2006 + A1:2009 + A2:2009

Class: A


Test Method: Assessed by fluctuating harmonics over 2.5 minutes

Frequency Range: 100 Hz to 2.0 kHz

Operation Mode: The fan was turned on at the software prompt and was operating throughout

the test.

Mains Voltage: 230Vac

Test Equipment Used:

8675 Schaffner NSG1007-5 InterHarmonics Power Source

Voltech IEC555 Reference Impedance Network (short-circuited)

Voltech PM6000 Power Analyser 8688 IEC1000-3 Software Release 3.11.07

Test Results:

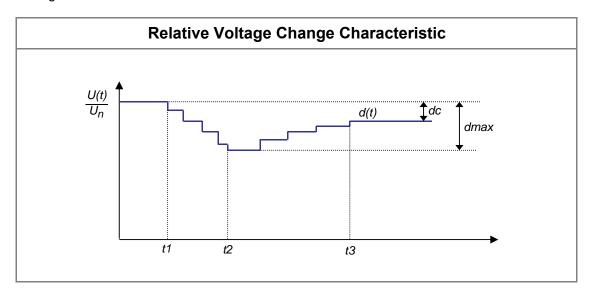
The test was performed more than once in order to obtain a repeatability of the result within ±5%.

Test Observation Period:	Power Consumption (W):	Repeatability achieved (Y/N):	Result:
2.5 minutes	3.5	Yes	Pass

Additional Comments:

None

R15-3459A Page 11 of 29


Section 4.6: Voltage Fluctuations

Test Standard: EN 61000-3-3:2008

Operation Mode: The fan was turned on at the software prompt, was turned off and on during

the test, and was operating for the remainder of the test.

Mains Voltage: 230Vac

Test Equipment Used:

8675 Schaffner NSG1007-5 InterHarmonics Power Source

Voltech IEC555 Reference Impedance Network (open-circuited)

Voltech PM6000 Power Analyser
8688 IEC1000-3 Software Release 3.11.07

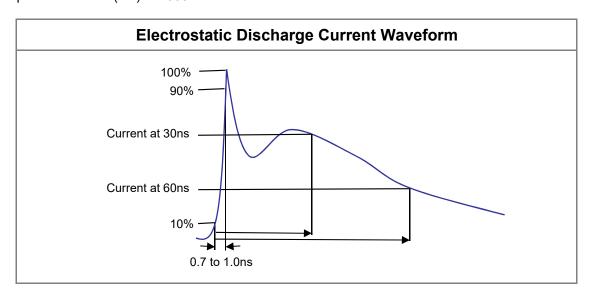
Test Results:

Parameter measured:	Measured level:	Limit:	Result:
dc	0.002	3.3	Pass
dmax	0.186	4	Pass
d(t)	0	500	Pass
Pst	0.106	1	Pass

Additional Comments:

None

R15-3459A Page 12 of 29


Section 4.7: Electrostatic Discharge

Test Standard: EN 55014-2:1997 + A1:2001 + A2:2008
Basic Standard: EN 61000-4-2:1995 + A1:1998 + A2:2001
Operation Mode: The fan was operating during the test.

Observing: The continued operation of the fan and illumination of the LED were

monitored during the test.

Performance Criteria: B
Temperature (C): 21.3
Relative Humidity (%): 46
Atmospheric Pressure (mb): 1005

Test Equipment Used:

8709 Teseq NSG434 ESD Simulator
Horizontal Coupling Plane
Vertical Coupling Plane

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

Contact or Air Discharge?	Applied to:	+2kV	-2kV	+4kV	-4kV	+6kV	-6kV	+8kV	-8kV	Result:
Contact	HCP	N/A	N/A	OK	OK	N/A	N/A	N/A	N/A	Pass
Contact	VCP	N/A	N/A	OK	OK	N/A	N/A	N/A	N/A	Pass
Air	Top grill	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass
Air	Front grill	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass
Air	LED	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass
Air	Movement Sensor	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass
Air	top side hole	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass
Air	bottom side hole	N/A	N/A	N/A	N/A	N/A	N/A	OK	OK	Pass

Additional Comments:

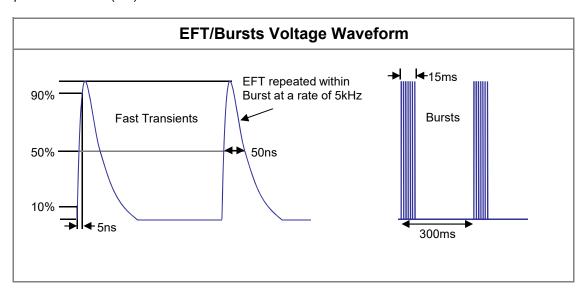
None

R15-3459A Page 13 of 29

Section 4.8: EFT/Bursts

Test Standard: EN 55014-2:1997 + A1:2001 + A2:2008

Basic Standard: EN 61000-4-4:2004


Operation Mode: The fan was operating during the test.

Observing: The continued operation of the fan and illumination of the LED were

monitored during the test.

Test Duration: 2.0 minutes

Performance Criteria: B
Temperature (C): 21
Relative Humidity (%): 43
Atmospheric Pressure (mb): 1005

Test Equipment Used:

Schaffner NSG2025 Transient Generator Schaffner WIN2025 EFT/Bursts Software

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

Port Under Test:	+0.5kV	-0.5kV	+1kV	-1kV	+2kV	-2kV	Result:
Live	N/A	N/A	OK	OK	N/A	N/A	Pass
Neutral	N/A	N/A	OK	OK	N/A	N/A	Pass
Earth	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LN	N/A	N/A	OK	OK	N/A	N/A	Pass

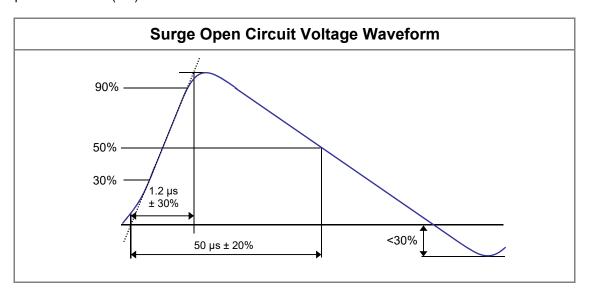
Additional Comments:

None

R15-3459A Page 14 of 29

Section 4.9: Surge Immunity

Test Standard: EN 55014-2:1997 + A1:2001 + A2:2008


Basic Standard: EN 61000-4-5:2006

Operation Mode: The fan was operating during the test.

Observing: The continued operation of the fan and illumination of the LED were

monitored during the test.

Performance Criteria: B
Temperature (C): 22
Relative Humidity (%): 45
Atmospheric Pressure (mb): 1006

Test Equipment Used:

8746 Schaffner Modula 6100 test system 8752 Schaffner Modula software V2.7

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

Applied:	φ Angle:	R	С	+0.5kV	-0.5kV	+1kV	-1kV	+2kV	-2kV	Result:
L-N	0	2 Ω	18 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
L-N	90	2 Ω	18 µF	N/A	N/A	OK	N/A	N/A	N/A	Pass
L-N	270	2 Ω	18 µF	N/A	N/A	N/A	OK	N/A	N/A	Pass
L-E	0	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
L-E	90	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
L-E	270	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N-E	0	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N-E	90	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N-E	270	12 Ω	9 µF	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Additional Comments:

None

R15-3459A Page 15 of 29

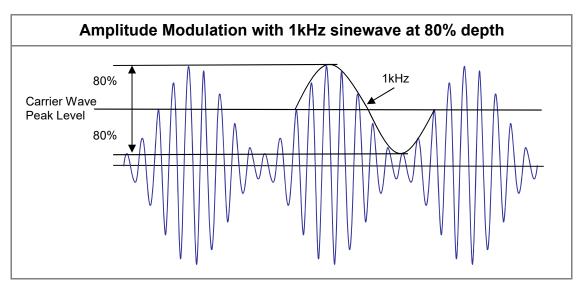
Section 4.10: Conducted RF Immunity

Test Standard: EN 55014-2:1997 + A1:2001 + A2:2008

Basic Standard: EN 61000-4-6:2007 + Corr 2007
Operation Mode: The fan was operating during the test.

Observing: The continued operation of the fan and illumination of the LED were

monitored during the test.


Frequency Range: 0.15 MHz to 230 MHz

Frequency Step Rate: 1.0 % Dwell time: 3.0 s

Test Level: 3.0 V (RMS)

Modulation: 80 % Amplitude Modulation with 1.0 kHz sine wave

Performance Criteria: A
Temperature (C): 21.4
Relative Humidity (%): 43

Test Equipment Used:

8527	HP8567A Signal Generator
8531	AR 25A250 RF Amplifier

Bird 25-A-MFB-10 10dB Attenuator

8677 Schaffner CDN-M2-16 Coupling / Decoupling Network

- Associated Cables

8635 EMC Hire Conducted Immunity Software

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

Port Under Test:	RF coupled via:	Observed effect on EUT:	Result:
Mains	M2	No malfunctions observed during the test	Pass

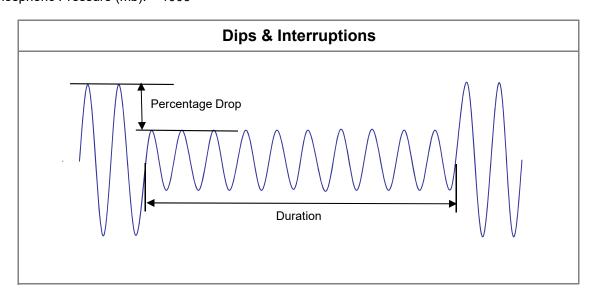
Additional Comments:

None

R15-3459A Page 16 of 29

Section 4.11: Dips & Interruptions

Test Standard: EN 55014-2:1997 + A1:2001 + A2:2008


Basic Standard: EN 61000-4-11:2004

Operation Mode: The fan was operating during the test.

Observing: The continued operation of the fan and illumination of the LED were

monitored during the test.

Mains Voltage: 230Vac
Performance Criteria: C
Temperature (C): 21.9
Relative Humidity (%): 46
Atmospheric Pressure (mb): 1006

Test Equipment Used:

Schaffner Modula 6100 test system

8742 Carroll & Meynell 15A Variac 8522 Beckman T100B multimeter 8752 Schaffner Modula software V2.7

8648 Oregon Scientific BAA898HG Environmental Monitor

Test Results:

Percentage Drop:	Duration:	Performance Criteria:	Observed effect on EUT:	Result:
>95	+ve 0.5	С	No malfunctions observed during the test	Pass
>95	-ve 0.5	С	No malfunctions observed during the test	Pass
60	10	С	No malfunctions observed during the test	Pass
30	50	С	No malfunctions observed during the test	Pass

Additional Comments:

None

R15-3459A Page 17 of 29

Section 5: Performance Criteria

Below is the performance criteria as expressed in EN 55014-2 EMC immunity standard.

Performance criterion A: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is self- recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Section 6: List of Abbreviations

EUT: Equipment Under Test

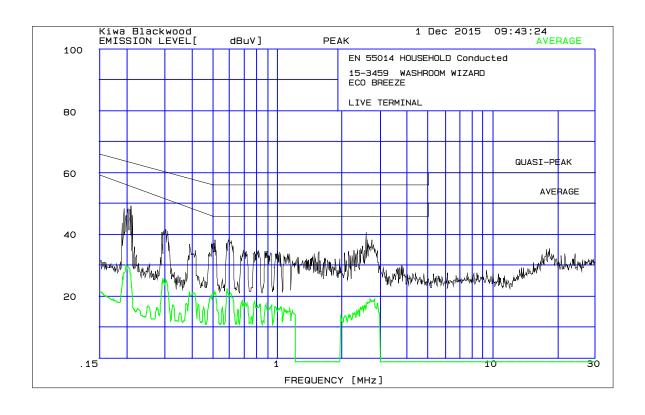
AE: Auxiliary Equipment (i.e. equipment connected to the EUT)

PK: Peak Measurement Detector
QP: Quasi-Peak Measurement Detector
AV: Average Measurement Detector

L: Live Terminal
N: Neutral Terminal
E: Earth Terminal

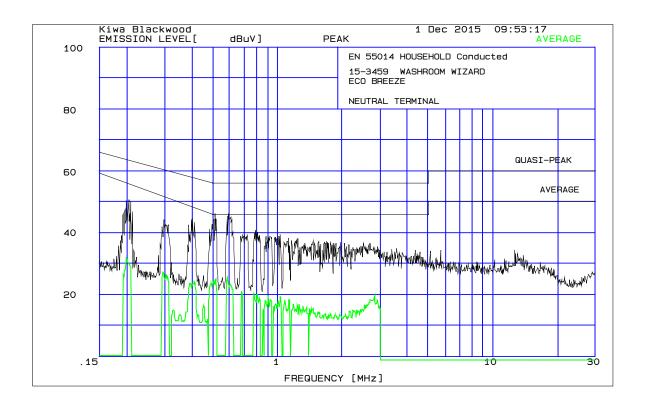
L-N: Applied between Live and Neutral terminalsL-E: Applied between Live and Earth terminalsN-E: Applied between Neutral and Earth terminals

V: Vertical Polarisation
H: Horizontal Polarisation


R15-3459A Page 18 of 29

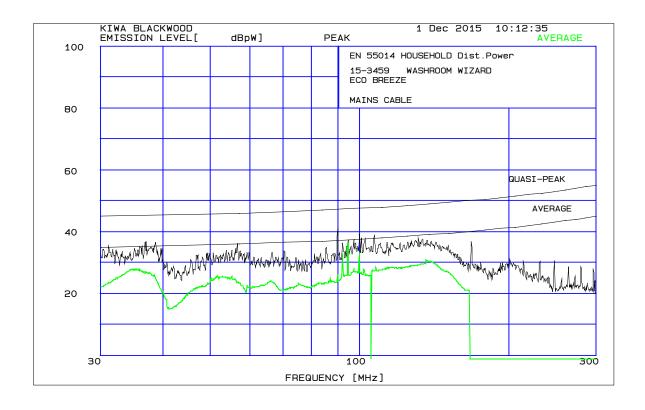
Annex A: Graphical Results

Graph 1: Mains Port Conducted Emissions - Live Terminal



R15-3459A Page 19 of 29

Graph 2: Mains Port Conducted Emissions - Neutral Terminal



R15-3459A Page 20 of 29

Graph 3: Disturbance Power Emissions - Mains Cable

R15-3459A Page 21 of 29

Annex B: Tabular Results

Table 1: Mains Harmonics Results

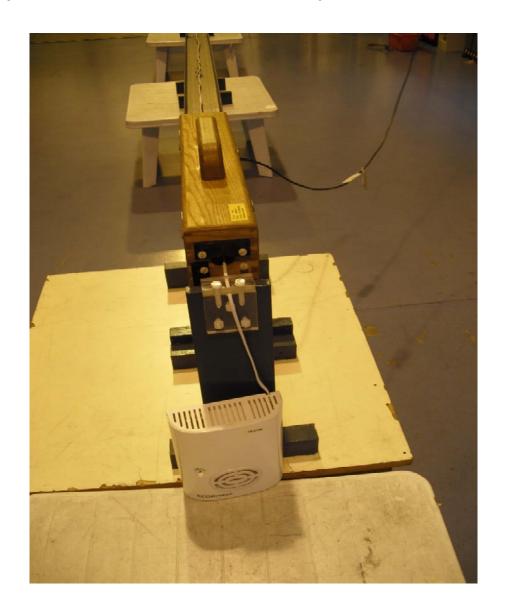
Produ	uct:		ECO BR	EEZE								01 De	c 2015	11:09)
Seria	I no:											Page	1 of 1		
Desc	ription:														
Resu	It Nam	e:	HARM1												
Volte	ch IEC	61000-	3 Windows	Softw	are 1.	12.05	RC1			Tes	t Date:	01 De	c 2015	11:04	1
Туре	of Tes	t:	Fluctuati	ng Har	monics	Test	- Wors	t Case	Table	(2006)					
Powe	er Analy	/zer:	Voltech Channel(s):	Voltech PM6000 SN: 100006700179 Firmware version: v1.20.06RC4											
			1. SN: 0900	15501412	2, 28 Adju	sted Da	te: 14 MA	R 2009.	2. SN:N	one Adju	sted Date:	None			
			3. SN:None	Adjuste	d Date:No	ne 4.	SN:None	Adjust	ed Date:N	one					
			5. SN:None	Adjuste	d Date:No	ne 6.	SN:None	Adjust	ed Date:N	one					
			Shunt(s):												
			1. SN: 0910	24300522	2, 4 Adjus	ted Date	: 16 MAR	2009.	2. SN:No	ne Adjus	ted Date:N	one			
			3. SN:None	Adjuste	d Date:No	ne 4.	SN:None	Adjuste	d Date:No	one					
			5. SN:None	Adjuste	d Date:No	ne 6.	SN:None	Adjuste	d Date:No	one					
AC S	ource:		Mains / N	Manua	Source	е									
Overa	all Res	ült:													
	N 1 / A														
	N/A														
Class	6		Class A				\neg								
Class	Multip	lier	1				┪								
			<u> </u>												
Harm	Limit 1	Limit 2	Average <l Reading</l 	.1 <l2< td=""><td>Max Reading</td><td><l2< td=""><td>Pass FAIL</td><td>Harm</td><td>Limit 1</td><td>Limit 2</td><td>Average Reading</td><td><l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass</td></l2<></td></l1></td></l2<></td></l2<>	Max Reading	<l2< td=""><td>Pass FAIL</td><td>Harm</td><td>Limit 1</td><td>Limit 2</td><td>Average Reading</td><td><l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass</td></l2<></td></l1></td></l2<>	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass</td></l2<></td></l1>	Max Reading	<l2< td=""><td>Pass</td></l2<>	Pass
i 1			Reading	- 1	Reading		IAL				reading		reading		PAIL

9100	o waterp		<u> </u>												
Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" th=""><th>Max Reading</th><th><1.2</th><th>Pass FAIL</th><th>Harm</th><th>Limit 1</th><th>Limit 2</th><th>Average Reading</th><th>4.1 <4.2</th><th>Max Reading</th><th><1.2</th><th>Pa FA</th></l1>	Max Reading	<1.2	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	4.1 <4.2	Max Reading	<1.2	Pa FA
2	1.0800A	1.6200A	0.926mA	< <	0.975mA	1	N/A	3	2.3000A	3.4500A	13.37mA	11	13.44mA	1	N
4	430.0mA	645.0mA	0.849mA	11	0.905mA	1	N/A	5	1.1400A	1.7100A	12.44mA	11	12.50mA	1	N
6	300.0mA	450.0mA	0.801mA	11	0.852mA	1	N/A	7	770.0mA	1.1550A	11.96mA	11	12.01mA	1	N
8	230.0mA	345.0mA	0.748mA	11	0.787mA	1	N/A	9	400.0mA	600.0mA	11.06mA	11	11.11mA	/	. 1
10	184.0mA	276.0mA	0.684mA	11	0.724mA	1	N/A	11	330.0mA	495.0mA	10.14mA	11	10.19mA	1	1
12	153.3mA	230.0mA	0.638mA	11	0.678mA	1	N/A	13	210.0mA	315.0mA	9.099mA	11	9.170mA	/	1
14	131.4mA	197.1mA	0.539mA	11	0.573mA	1	N/A	15	150.0mA	225.0mA	7.936mA	//	8.009m.A	1	,
16	115.0mA	172.5mA	0.473mA	11	0.508mA	1	N/A	17	132.3mA	198.5mA	6.759mA	11	6.842mA	/	1
18	102.2mA	153.3mA	0.403mA	11	0.442mA	1	N/A	19	118.4mA	177.6mA	5.600mA	11	5.698mA	/	-
20	92.00mA	138.0mA	0.337mA	11	0.369mA	1	N/A	21	107.1mA	160.7mA	4.437mA	11	4.534mA	/	-
22	83.63mA	125.4mA	0.286mA	11	0.322mA	1	N/A	23	97.82mA	146.7mA	3.386mA	11	3.493mA	1	L
24	76.66mA	115.0mA	0.305mA	11	0.331mA	1	N/A	25	90.00mA	135.0mA	2.423mA	11	2.526mA	1	-
26	70.76mA	106.1mA	0.231mA	11	0.250mA	1	N/A	27	83.33mA	125.0mA	1.588mA	11	1.700mA	1	1
28	65.71mA	98.57mA	0.216mA	11	0.231mA	1	N/A	29	77.58mA	116.3mA	0.938mA	11	1.046mA	1	
30	61.33mA	92.00mA	0.215mA	/ /	0.232mA	1	N/A	31	72.58mA	108.8mA	0.616mA	11	0.680mA	/	
32	57.50mA	86.25mA	0.211mA	11	0.225mA	1	N/A	33	68.18mA	102.2mA	0.655mA	11	0.687mA	/	
34	54.11mA	81.17mA	0.209mA	11	0.226mA	1	N/A	35	64.28mA	96.42mA	0.842mA	11	0.881mA	1	_
36	51.11mA	76.66mA	0.201mA	11	0.215mA	1	N/A	37	60.81mA	91.21mA	1.011mA	11	1.044mA	1	-
38	48.42mA	72.63mA	0.192mA	/ /	0.211mA	1	N/A	39	57.69mA	86.53mA	1.053mA	11	1.079mA	1	1
40	46.00mA	69.00mA	0.182mA	11	0.201mA	1	N/A			l					

R15-3459A Page 22 of 29

Annex C: Photographs

Photograph 1: Mains Port Conducted Emissions Setup

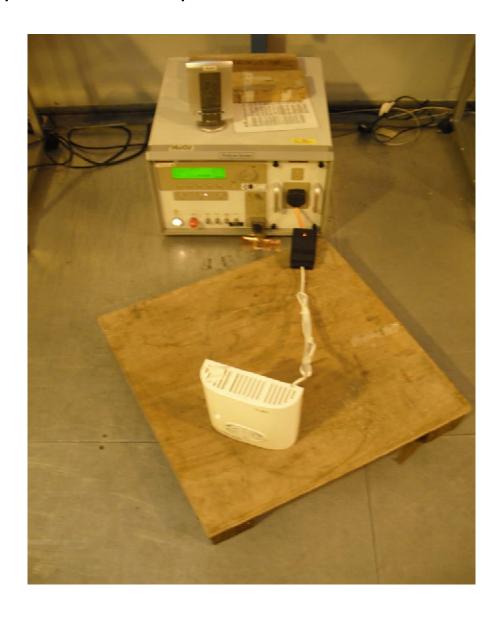


R15-3459A Page 23 of 29

Photograph 2: Disturbance Power Emissions Setup

R15-3459A Page 24 of 29

Photograph 3: Electrostatic Discharge Setup

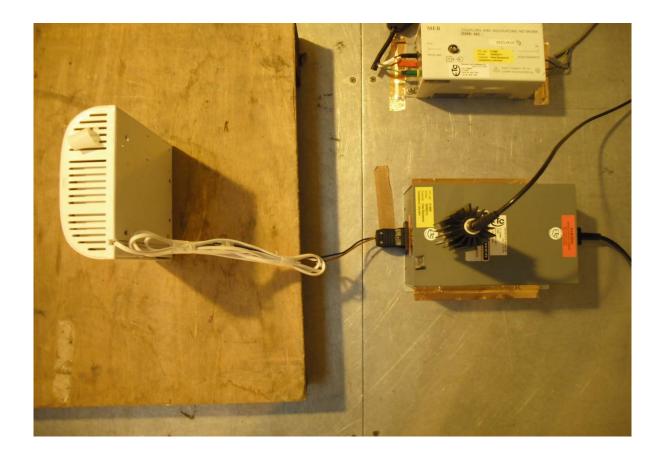


R15-3459A Page 25 of 29

Photograph 4: EFT / Bursts Setup

R15-3459A Page 26 of 29

Photograph 5: Surge Immunity Setup



R15-3459A Page 27 of 29

Photograph 6: Conducted RF Immunity Setup

R15-3459A Page 28 of 29

Photograph 7: Dips & Interruptions Setup

R15-3459A Page 29 of 29